产品名称	B23 NB模块硬件使用指南
文档页数	37
版本	V1. 01
日期	2018/3/27

B23

NB模块硬件使用指南

V1.01

上海亮衡信息科技有限公司

B23 NB 模块硬件使用指南

更新记录

版本	日期	作者	描述
V1.01	2018/3/27	陆晓峰	初始化版本

目 录

第一章 引 言	7
第二章 模块综述	8
2.1 模块简介	8
2.2 主要性能	8
2.3 模块功能框图	9
2.4 模块工作模式	10
第三章 接口应用描述	11
3.1 本章概述	11
3.2 模块接口	11
3.2.1 B23 管脚分布图	11
3.2.2. 模块管脚描述	12
3.3 电源接口	
3.4 VDD_EXT 2V8 电压输出	
3.5 开关机复位模式	15
3.5.1 开机	15
3.5.2 开机时序	
3.5.3 模块关机	16
3.5.3 复位控制	
3.6 UART 接口	17
3.6.1 串口应用电路	18
3.6.2 RI 接口	19
3.7 USIM 接口	20
3.7.1 USIM 卡参考电路	20
3.7.2 SIM_DECT 热插拔参考设计	21
3.8 ADC 接口	21
3.9 SPI 接口	22
3.10 I2C 总线	23
3.11 网络指示接口	23
3.12 通用 GPIO 接口	24
第四章 总体射频技术指标	25
4.1 本章概述	25
4.2 主天线和蓝牙天线	25

	4.3 射频信号线走线指导	26
4.4	射频连接器	27
4.5	工作频率	28
4.6	RF 传导发射功率和接受灵敏度	.28
4.6	功耗特性	29
第五章	接口电气特性	30
5.1	本章概述	30
5.2	极限工作	30
5.3	模块 IO 电平	. 30
5.4	电源	31
5.5	静电特性	31
5.6	可靠性指标	31
第六章	结构及机械特性	33
6.1	本章概述	33
6.2	外观	33
第七章	生产与包装	35
7.1	本章概述	35
7.2	模块包装与存储	35
7.3	生产焊接	35
第八章	术语缩写	37

图索引

图	图 2-1 B23 模块功能框图	10
图	图 3-1 B23 管脚分配图	11
图	图 3-2 VBAT 供电电源	14
图	图 3-3 VDD_EXT 电源输出时序图	14
图	图 3-5 开机时序图	15
图	图 3-5 开集电驱动开机参考电路	16
图	图 3-6 关机时序图	16
图	图 3-7 复位参考电路	17
图	图 3-8 复位时序图	17
图	图 3-9 全功能串口设计图	18
图	图 3-10 UART 串口设计图	19
图	图 3-11 UART 电平转换电路	19
图	图 3-12 RI 管脚信号波形	19
图	图 3-13 SIM 电路设计图	20
	图 3-14 SIM 卡热插拔检测电路	
	图 3-15 SPI 读时序图	
图	图 3-16 SPI 写时序图	22
图	图 3-17 I2C 接口参考电路	23
图	图 3-18 网络指示灯电路图	24
图	图 4-1 主天线匹配电路图	25
图	图 4-2 蓝牙天线匹配电路图	26
图	图 4-3 微带线的完整结构	26
图	图 4-4 参考地为第三层微带传输线结构	27
图	图 4-5 带状线的完整结构	27
图	图 4-6 RF 连接器尺寸图	27
图	图 4-7 天线连接器配套插头图	28
图	图 6-1 B23 模块外观图	33
图	图 6-2 B23 模块正视图与侧视图(单位 MM)	33
图	图 6-3 B23 模块底视图(单位 MM)	34
图	图 7-1 回流焊温度曲线图	36

表索引

表 2-1 关键特性	8
表 2-2 工作模式	10
表 3-1 引脚参数缩写	12
表 3-2 接口定义	12
表 3-3 开关机复位管脚定义	15
表 3-4 开机时序参数	15
表 3-5 关机时序参数	16
表 3-6 RESET 引脚参数	17
表 3-7 串口引脚定义	18
表 3-8 串口逻辑电平	18
表 3-9 USIM 卡信号定义	20
表 3-10 SIM 卡热插拔检测脚定义	
表 3-11 ADC 信号定义	22
表 3-12 SPI 信号定义	22
表 3-13 I2C 管脚定义	
表 3-14 网络指示灯管脚定义	
表 3-15 网络指示状态	23
表 3-16 通用 GPIO 管脚定义	24
表 4-1 RF 管脚定义	25
表 4-2 RF 连接器主要参数	28
表 4-3 射频频率表	28
表 4-4 B23 RF 输出功率	28
表 4-5 传导射频灵敏度指标	29
表 4-6 NB-IOT 功耗	29
表 5-1 B23 模块工作存储温度	30
表 5-2 B23 模块极限工作电压范围	30
表 5-3 B23 模块电气特性	30
表 5-4 B23 模块工作电压	31
表 5-5 B23 ESD 特性	31
表 5-6 可靠性测试	31
表 7-1 回流工艺参数表	36
表 8-1 术语缩写	37

第一章 引 言

本文档是无线解决方案产品 B23 NB 模块硬件接口手册,旨在描述该模块方案产品的硬件组成及功能特点、应用接口定义及使用说明,电气性能和机械特性等。结合本文档和其他应用文档,用户可以快速使用该模块来设计无线产品。

第二章 模块综述

2.1 模块简介

B23 模块是一款两频段 NB-IOT 物联网无线通信模块,支持工作频段为 Band5或 Band8。一般主要应用于低功耗的数据传输业务。满足 3GPP Release 13 标准。模块一共有 44 个管脚。具有 15.8mm*17.7mm*2.2mm 的超小尺寸,几乎能够满足所有的 M2M 的需求。B23 模块是贴片式模块,采用 LCC 封装,可以通过其管脚焊盘内嵌于客户应用中,提供了模块与客户主板间丰富的硬件接口。

B23 NB 模块采用低功耗技术, 待机功耗小于 1mA, 在深度睡眠可低至 5uA B23 NB 模块可以应用在以下场合:

- ◆ 智慧城市(智能停车,水/气表,路灯,烟雾报警器,垃圾箱等)
- ◆ 消费与医疗(穿戴设备, VIP 追踪, 生活辅助, 远程临床跟踪等)
- ◆ 工业、农业智能监测(机器报警,气体探测,灌溉,土壤 PH 值等)
- ◆ 农业与环境(农业应用,环境监控等)
- ◆ 后勤保障(工业资产,货柜追踪,位置与状态更新等)

M NOTE

"*"表示正在开发中。

2.2 主要性能

表 2-1 关键特性

特性	描述				
物理特性	15.8mm*17.7mm*2.2mm				
应用处理器	192MHz MIPS processor with 16KB I-Cache and 16KB D-Cache				
工作电压	3.4V - 4.2V 典型电压 3.7V				
省电	PSM 模式功耗< 5uA				
待机	休眠模式电流< 1mA				
_	电源接口				
	若干通用 GPIO 接口				
应用接口	一路标准 SIM 接口,支持 3.0V/1.8V,支持热插拔功能*				
	一路硬件复位接口				
	三路 UART 串口接口				
	一路 SPI 接口				
	一路网络状态指示接口				

B23 NB 模块硬件使用指南

	一路 PWRKEY#接口		
	一路 ADC 检测接口		
工作频段	两频: Band5, Band8 模块可自动搜寻频段,频段选择可通过 AT 命令设置。需对应		
工作/伙权	特定版本		
	UDP/TCP/CoAP/LWM2M		
网络协议特性	PPP/SSL/DTLS/FTP		
	HTTP/MQTT/HTTPS		
数据传输特性	Single-tone:25.5kbps(DL),16.7kbps(UP)		
数1/47相付注 	Multi-tone:25.5kbps(DL),62.5kbps(UP)		
 天线接口	主天线 50 欧姆接口		
人线按口	蓝牙天线 50 欧姆接口		
固件升级	串口升级		
	正常工作温度 - 20° C to +70° C		
温度范围	极限工作温度 -40° C to +85° C		
	存储温度: -45° C to +90° C		
AT 指令	支持标准 AT 指令集(Hayes 3GPP TS 27.007 和 27.005)		

2.3 模块功能框图

B23 NB 模块功能框图主要包含以下单元:

- ◆ 基带处理单元
- ◆ 电源管理单元
- ◆ 射频收发单元
- ♦ 射频前端单元
- ♦ 外围接口

B23 NB 模块功能框图如下所示:

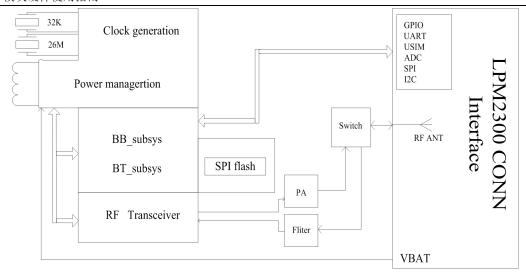


图 2-1 B23 模块功能框图

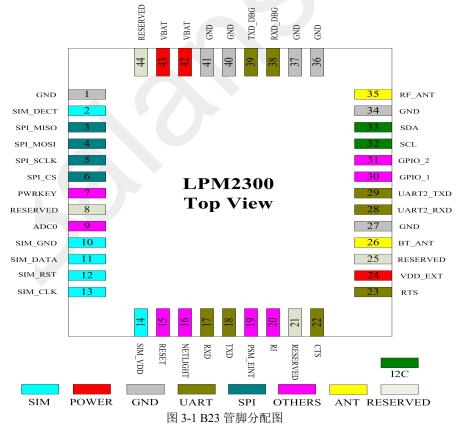
2.4 模块工作模式

表 2-2 工作模式

	W = = TH W.
工作模式	描述
关机	关机情况下,模块不能工作
飞行模式	模块关闭模块射频电路, 无法与网络进行交互
休眠	模块关闭大部分功能,会间隙地与网络同步
空闲	开机并成功注册网络,处于空闲状态
数据传输	模块处于工作状态,和网络有数据交互
PSM 模式	进入 PSM 模式后,模块能达到最小功耗,模块内部各个电源关
	闭,除 RTC 外的软件停止运行,串口不能使用。

第三章 接口应用描述

3.1 本章概述


B23 NB 模块一共有 44 个管脚,包含以下部分单元接口功能。后面章节将详细说明各单元接口的功能。

- ◆ 电源接口
- ◆ USIM 接口
- ◆ UART接口
- ◆ 网络状态指示接口
- ◆ SPI 接口
- ◆ 射频天线接口
- ◆ I2C接口

3.2 模块接口

3.2.1 B23 管脚分布图B23

管脚分配如下:

NOTE

① 该模块一般 IO 端口电平为 2.8V (SIM 卡端口电平支持 1.8V 和 3.0V)。

② 该模块定义 RESERVED 管脚悬空,不得使用。

3.2.2. 模块管脚描述

模块接口管脚定义描述如下:

表 3-1 引脚参数缩写

符号标志	描述
Ю	输入或输出
PI	电源输入
PO	电源输出
AI	模拟输入
AO	模拟输出
DI	数字输入
DO	数字输出

表 3-2 接口定义

管脚	引脚名称	IO	功能描述	备注	
供电					
42, 43	VBAT	PI	模块供电电源	输入电压 3.4~4.2V	
24	VDD_EXT	РО	内部稳压电源输出 2.8V	不用时可以悬空	
系统控制					
7	PWRKEY	DI	开关机控制输入,低电平有数	效	
15	RESET	DI	硬件复位控制,低电平有效		
SIM 接口		1	,		
2	SIM_DECT	DI	SIM 卡热插拔检测	内部电平已上拉	
10	SIM_GND		SIM 卡地		
11	SIM_DATA	IO	SIM 卡总线数据	内部10K上拉电阻	
12	SIM_RST	DO	SIM 卡复位输出	远离干扰源	
13	SIM_CLK	DO	SIM 卡时钟输出	远离干扰源	
14	SIM_VDD	РО	输出给 SIM 卡供电电压	远离干扰源	
状态指示					
16	NETLIGHT	DO	网络状态指示	2.8V 电压域	
主串口接口					
17	RXD	DI	主数据接收	2.8V 电压域	
18	TXD	DO	主数据发送	2.8V 电压域	

B23 NB 模块硬件使用指南

	11 10/1311113			
20	RI	DO	振铃提示	2.8V 电压域
22	CTS	DO	清除发送	2.8V 电压域
23	RTS	DI	请求发送	2.8V 电压域
调试串口担	妾 口			
38	RXD_DBG	DI	模块调试数据接收	调试串口
39	TXD_DBG	DO	模块调试数据发送	调试串口
UART2 串				
28	UART2_RXD	DI	UART2 数据接收	2.8V 电压域
29	UART2_TXD	DO	UART2 数据发送	2.8V 电压域
I2C 接口				
32	SCL	OD	I2C 总线时钟输出	内部 10K 电阻上拉
33	SDA	IO	I2C 总线数据输入输出	内部 10K 电阻上拉
SPI 接口				
3	SPI_MISO	DI	主机输入从机输出	2.8V 电压域
4	SPI_MOSI	DO	主机输出从机输入	2.8V 电压域
5	SPI_SCLK	DO	串行时钟信号	2.8V 电压域
6	SPI_CS	DO	片选信号	2.8V 电压域
其他功能管	脚			
19	PSM_EINT	DI	外部中断引脚	2.8V 电压域
9	ADC0	AI	通用模拟数字转换器接口	范围 0.1V~2.8V
通用输入输	か出接口			
30	GPIO_1	IO	通用输入/输出口	
31	GPIO_2	IO	通用输入/输出口	
天线接口				
26	BT_ANT	IO	蓝牙天线接口	50 欧姆特性阻抗
35	RF_ANT	IO	射频天线接口	50 欧姆特性阻抗
8,21,25, 44	RESERVED		NC	不用保持悬空

3.3 电源接口

B23 NB 模块电源接口包含两部分:

- ♦ VBAT 为模块工作电源;
- ◆ VDD_EXT 为内部 LDO 2.8V 输出电源,可供外部使用。

电源 VBAT 电压输入范围为 3.4V~4.2V。模块通过 VBAT 这两个引脚给内部的射频和基带电路供电。 在确保 VBAT 电源供电足够的前提下,在靠近电源输入处可并联 2 颗 470uF/6.3V 钽电容,再并上 10pF,33pF,0.1uF,1uF 陶瓷电容。VBAT 的 PCB 走线尽量短并且粗。

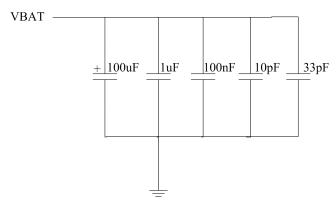


图 3-2 VBAT 供电电源

M NOTE

- ① 为防止浪涌及过压对模块的损坏,建议在模块 VBAT 引脚上并联一个 5. 1V/500mW 的齐纳二极管。
- ② 建议在 VBAT 管脚增加 3 个陶瓷电容(33pF, 10pF, 100nF) 且靠近 VBAT 管脚放置。

3.4 VDD_EXT 2V8 电压输出

B23 模块正常开机后,第 24 管脚会输出电压 2.8V,电流负载最大 50mA,外部主控可以读取 VDD_EXT 的电压来判断模块是否开机。VDD_EXT 也可以作为外部供电使用,例如:电平转换芯片等。

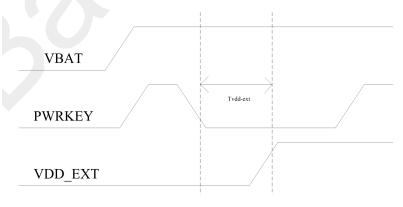


图 3-3 VDD EXT 电源输出时序图

3.5 开关机复位模式

3.5.1 开机

B23 NB 模块的 7 脚是开机脚,模块开机是低电平有效,PWRKEY 拉低至少500ms,模块开机,用户可通过查询 VDD EXT 管脚的高低电平来判断模块是否开机。

B23 NB 模块在开机状态下, 拉低 PWRKEY 管脚至少 1S 后释放, 模块将执行关机流程关机(此功能正在开发当中)。

管脚	信号名称	I/O 属性	高电平值	描述
7	PWRKEY	PI	VBAT-0.3V	低电平开机
15	RESET	DI	2.8V	模块复位控制脚,低电平有效

表 3-3 开关机复位管脚定义

3.5.2 开机时序

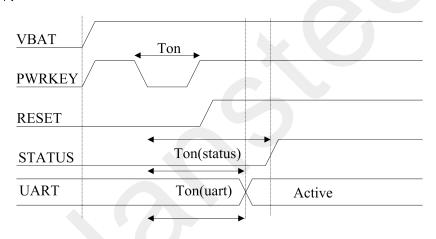


图 3-5 开机时序图

表 3-4 开机时序参数

符号	描述	最小值	典型值	最大值	单位
Ton	开机低电平宽度	100	500	-	ms
Ton(status)	开机时间(据 status 状态判断)		TBD	-	S
Ton(uart)	开机时间(据 uart 状态判断)		TBD	-	S

推荐使用开集驱动电路来控制 PWRKEY ,在拉高基极电平 500ms 后可以释放,此时模块开机。也可以通过按钮进行开关机设计,按钮附件需要放置一个 TVS 管用于 ESD 保护。

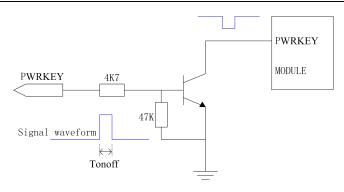


图 3-5 开集电驱动开机参考电路

3.5.3 模块关机

B23 模块关机可通过 PWRKEY 和 AT 命令关机。

模块在开机状态下,拉低 PWRKEY 管脚至少 1.2S 后释放,模块将执行关机流程。 关机时序图如下:

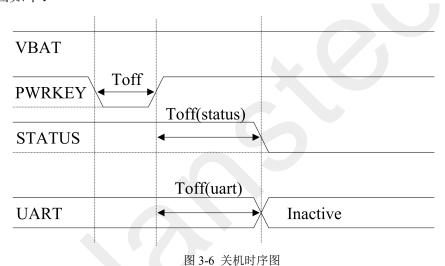


表 3-5 关机时序参数

描述		最小值	典型值	最大值	单位
Toff	关机低电平脉冲宽度	1.2		_	S
Toff(status)	开机时间(据 status 状态判断)		TBD		
Toff(uart)	开机时间(据 uart 状态判断)		TBD	_	

3.5.3 复位控制

B23 模块 PIN15 信号为 RESET 复位管脚。应用端检测到模块异常,软件无响应时,可以对模块进行复位,将此管脚拉低 100-450ms 即可复位模块,管脚外部建议上拉电阻 10K 到 VDD_EXT。RESET 管脚对干扰比较敏感,可以在信号附近安装一个 10 nF 到 0.1 μF 的电容,用于信号过滤,走线时远离射频干扰信号。

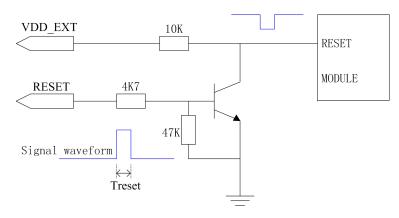


图 3-7 复位参考电路

表 3-6 RESET 引脚参数

符号	描述	最小值	典型值	最大值	单位
Treset	低电平脉冲宽度	100		600	ms
VIH	RESET 输入高电平电压	1.96	2.8	3	V
VIL	RESET 输入低电平电压	-0.3	0	0.84	V

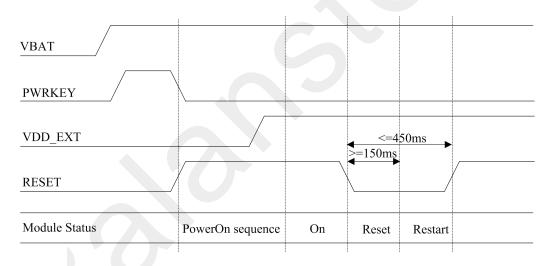


图 3-8 复位时序图

B23 模块支持 AT 命令复位, AT 指令为 AT+TRB 即可重启模块。详细指令可查看 B23 AT 指令集手册。

3.6 UART 接口

B23 模块提供三组 UART 接口。主串口,调试串口以及辅助串口,串口电平为 2.8V。模块是 DCE (Data Communication Equipment)设备

主串口可实现 AT 交互指令和外设数据交互等。

调试串口可以升级固件, 查看日志信息等。

模块串口波特率可设置 4800,9600,19200,38400,57600,115200,230400,460800,921600bps 波特率,默认为 57600bps。

管脚	引脚名称	IO	功能描述	备注
18	TXD	DO	主数据发送	2.8V 电压域
20	RI	DO	振铃提示	2.8V 电压域
22	CTS	DO	清除发送	2.8V 电压域
23	RTS	DI	请求发送	2.8V 电压域
28	UART2_RXD	DI	UART2 数据接收	2.8V 电压域
29	UART2_TXD	DO	UART2 数据发送	2.8V 电压域
38	RXD_DBG	DI	模块调试数据接收	调试串口
39	TXD_DBG	DO	模块调试数据发送	调试串口

表 3-7 串口引脚定义

表 3-8 串口逻辑电平

参数	最小值	最大值	单位
VIL	0	0.3*VDD_EXT	V
VIH	0.7*VDD_EXT	VDD_EXT	V
VOL	0	0.3*VDD_EXT	V
VOH	0.7*VDD_EXT	VDD_EXT	V

3.6.1 串口应用电路

当用户想使用全功能串口时, 可以参考以下连接方式

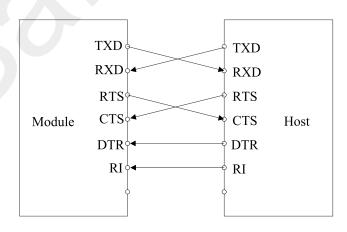


图 3-9 全功能串口设计图

若需要使用2线串口时,可以参考以下串口设计。

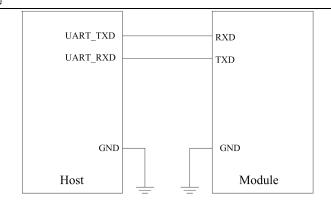


图 3-10 UART 串口设计图

模块串口是 TTL 2.8V 电平,如果串口需要跟 3.3V 电平的 MCU 相连,需要外部增加一颗电平转换芯片来实现电平匹配,芯片连接方式可参考以下电路:

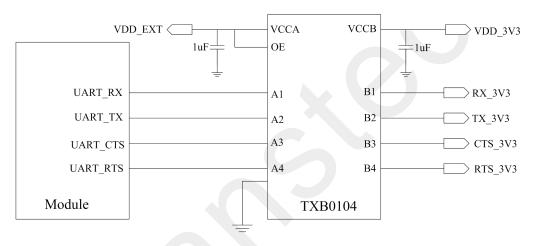


图 3-11 UART 电平转换电路

3.6.2 RI 接口

B23 模块支持串口休眠唤醒功能,RI 脚可以用作中断来唤醒主机。

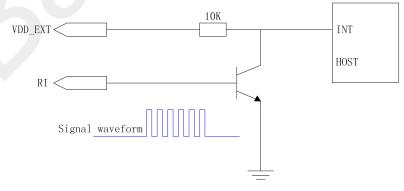


图 3-12 RI 管脚信号波形

3.7 USIM 接口

B23 模块提供一个兼容 ISO 7816-3 标准的 USIM 卡接口, USIM 卡电源由模块内部电源管理器提供,支持 1.8V/3.0V 的电压。

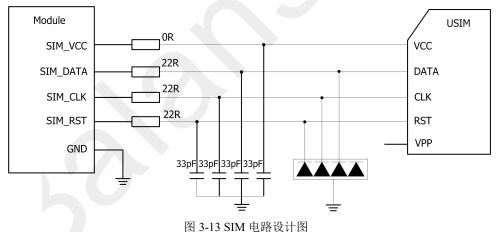

管脚号	信号名称	IO 属性	描述	备注
2	SIM_DECT	DI	SIM 卡热插拔检测	内部电平已上拉
10	SIM_GND		SIM 卡地	
11	SIM_DATA	IO	SIM 卡总线数据	内部 10K 上拉电阻
12	SIM_RST	DO	SIM 卡复位输出	远离干扰源
13	SIM_CLK	DO	SIM 卡时钟输出	远离干扰源
14	SIM_VDD	PO	输出给 SIM 卡供电电压	远离干扰源

表 3-9 USIM 卡信号定义

3.7.1 USIM 卡参考电路

B23 模块不自带 USIM 卡槽,用户使用时需在自己的接口板上设计 USIM 卡槽。

USIM 卡接口参考电路如下:

M NOTE

- ① USIM 接口线上建议选择 ONSEMI 公司的 SMF15C 器来做 ESD 防护,外围电路器件应该靠近卡座放置。SIM 卡座靠近模块布局。
- ② USIM 卡电路容易受到射频干扰引起不识卡或掉卡,因此卡槽应尽量放置在远离 天线射频辐射的地方,卡走线尽量远离射频,电源和高速信号线。
 - ③ SIM DATA 内部已经通过 47K 电阻上拉到 VDD EXT,外部不需要上拉。
- ④ SIM_DECT 为 SIM 卡插入或未插入检测脚,默认时为高电平,热插拔应用时可通过此 PIN 脚检测 SIM 卡状态。

- (5) USIM 接口为避免瞬间电压过载,需在信号线通路上各串联一个 22R 的电阻。
- ⑥ USIM 卡座的地和模块的地要保持良好的连通性。

3.7.2 SIM DECT 热插拔参考设计

B23 模块支持 USIM 卡热插拔功能。

SIM_DECT 管脚作为一个输入检测脚来判断 USIM 卡插入与否。SIM_DECT 管脚默认为上拉高电平。可以通过 AT+HOSCFG 来打开或者关闭热插拔功能,此功能默认关闭(详情请见 B23 AT 指令集)。

	VV - V - I MIGHING I MAN I / C / C				
NO	管脚检测状态	功能描述			
1	盲	SIM 卡插入,SIM_DECT 为高			
2	低	SIM 卡拔出,SIM DECT 为低			

表 3-10 SIM 卡热插拔检测脚定义

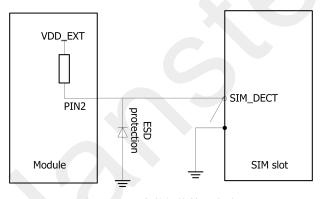


图 3-14 SIM 卡热插拔检测电路*

MOTE

- ① 建议在模块测的 SIM DECT 管脚旁增加一个二极管保护。
- ② 使用常闭式 SIM 卡座或常开式 SIM 卡座时,可通过 AT 指令设置检测功能。如设置 AT+HOSCFG=1,1 时,SIM 卡在位时状态为高,当设置 AT+HOSCFG=1,0 时,SIM 卡在位时状态为低,当设置 AT+HOSCFG=0,0 时,SIM 卡热插拔功能关闭。
 - ③ "*"表示正在开发中。

3.8 ADC 接口

B23 模块提供了一路 10 位模数转换输入接口,可以实现外部温度等采样监控,通过 AT 命令能够读取 ADC 管脚电压。

为了改善 ADC 精度, ADC 走线应该有良好的参考地。

表 3-11 ADC 信号定义

管脚号	信号名称	IO 属性	高电平值	描述
9	ADC0	AI	通用模拟数字转换器接口	

3.9 SPI 接口

B23 模块提供了一组 SPI 接口,接口电压 2.8V。

表 3-12 SPI 信号定义

管脚	引脚名称	Ю	功能描述	备注
3	SPI_MISO	DI	主机输入从机输出	2.8V 电压域
4	SPI_MOSI	DO	主机输出从机输入	2.8V 电压域
5	SPI_SCLK	DO	串行时钟信号	2.8V 电压域
6	SPI_CS	DO	片选信号	2.8V 电压域

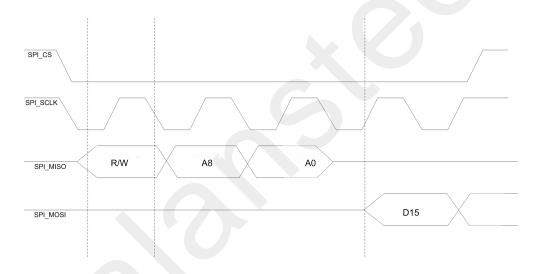


图 3-15 SPI 读时序图

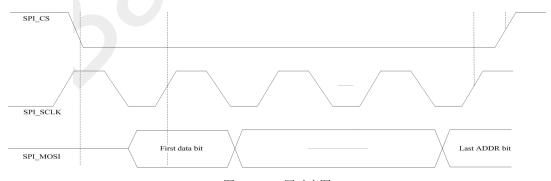


图 3-16 SPI 写时序图

3.10 I2C 总线

B23 NB 模块提供一组硬件 5.0 协议双向串行总线,时钟速率为 400KHZ,接口电压为 2.8V 电平值。

管脚	引脚名称	IO	功能描述	备注
32	SCL	OD	I2C 总线时钟输出	内部电阻上拉
33	SDA	IO	I2C 总线数据输入输出	内部电阻上拉

表 3-13 I2C 管脚定义

I2C 参考电路如下图:

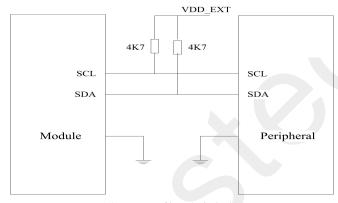


图 3-17 I2C 接口参考电路

MOTE

I2C_SCL 和 I2C_SDA 引脚内部已经上拉,因此使用时外部可以忽略上拉电阻。

3.11 网络指示接口

B23 NB 模块提供一路 NENLIGHT 管脚指示网络通信状态,可用来驱动指示网络状态的 LED 灯。

表 3-14 网络指示灯管脚定义

管脚名称	管脚	I/O 属性	描述
16	NETLIGHT	DO	网络状态指示

表 3-15 网络指示状态

状态	LED 显示状态
模块未运行或模块未注册	灯灭
模块成功注册网络	灯亮

LED 网络指示灯参考设计图如下:

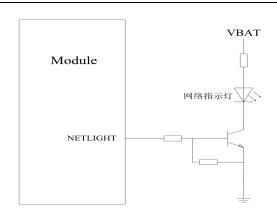


图 3-18 网络指示灯电路图

NOTE

网络指示灯电路图中电阻值大小可根据 LED 灯参数来调整。

3.12 通用 GPIO 接口

B23 NB 模块提供了两路 GPIO。其中有些 GPIO 可复用为多种功能。具体使用情况可咨询模块提供商。

管脚	引脚名称	Ю	功能描述	备注
30	GPIO_1	IO	通用输入/输出口	2.8V 电平
31	GPIO_2	IO	通用输入/输出口	2.8V 电平

表 3-16 通用 GPIO 管脚定义

第四章 总体射频技术指标

4.1 本章概述

B23 NB 模块射频总体技术指标包含以下部分:

- ♦ 工作频率;
- ◆ 传导射频测量:
- ◆ 传导接收灵敏度和发射功率;
- ◆ 天线要求
- ◇ 模块功耗特性

4.2 主天线和蓝牙天线

B23 NB 模块提供两路天线接口,一路为主天线接口,一路为蓝牙天线接口。在电路设计时,模块和天线之间走线需保证 50 欧姆阻抗。

天线是一个敏感器件,容易受到外部环境的影响。例如,模块尺寸、天线位置、占 用空间大小以及周围的接地等情况均可能影响天线性能。

模块天线管脚定义如下:

表 4-1 RF 管脚定义

管脚	引脚名称	IO	功能描述	备注
26	BT_ANT	IO	蓝牙天线接口	50 欧姆特性阻抗
35	RF_ANT	IO	射频天线接口	50 欧姆特性阻抗

B23 NB 模块的 35 脚为主天线接口,为方便天线调试需要在主板上增加 π 型匹配电路,走 50 欧阻抗线,推荐电路如下图:

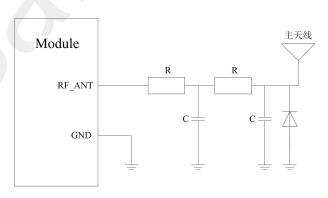


图 4-1 主天线匹配电路图

B23 NB 模块的 26 脚为蓝牙天线接口,为方便天线调试需要在主板上增加 π型匹配电路,走 50 欧阻抗线,推荐电路如下图:

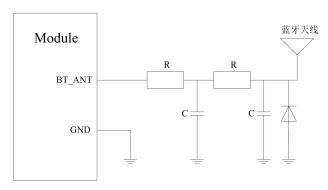


图 4-2 蓝牙天线匹配电路图

M NOTE

B23 NB 模块两路天线采用焊盘方式引出。

- ① 天线阻抗走线需要远离数字信号线,电源等干扰信号
- ② 天线阻抗走线需要立体包地,并在走线两边多加地孔做隔离。
- ③ 天线线路损失要小于 0.3dB, 所以要保持 PCB 走线尽可能短。
- ④ 天线匹配中 TVS 管引脚本身的寄生电容必须要小,以避免信号受到干扰。同时考虑到天线所使用的频段,以及不同频段所能够接受的最小寄生电容值,通常使用在天线上的 ESD 保护组件其寄生电容值必须小于 0.5pF,甚至更低。

4.3 射频信号线走线指导

对于用户而言,所有的射频信号线的特性阻抗应控制在 50Ω 。射频信号线的阻抗,由材料的介电常数、走线宽度(W)、对地间隙(S)、以及参考地平面的高度(H)决定。请使用阻抗模拟工具来计算 RF 走线的阻抗值,PCB 特性阻抗的控制通常采用微带线与共面波导两种方式。

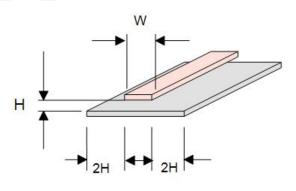


图 4-3 微带线的完整结构

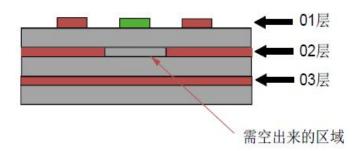


图 4-4 参考地为第三层微带传输线结构

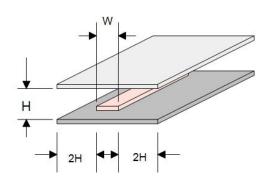


图 4-5 带状线的完整结构

4.4 射频连接器

设计过程中如果需要使用 RF 连接器的连接方式,天线连接器必须使用 50 欧姆特性 阻抗的同轴连接器,推荐使用 Hirose 的 UF.L-R-SMT 连接器。

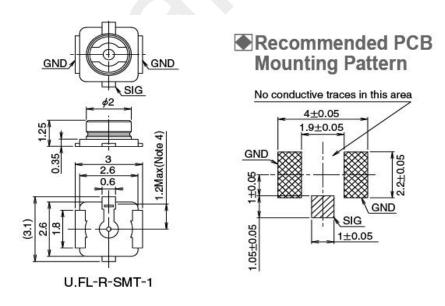


图 4-6 RF 连接器尺寸图

与此连接器配套的射频连接器插头为 HRS 公司的 U.FL-LP 系列。

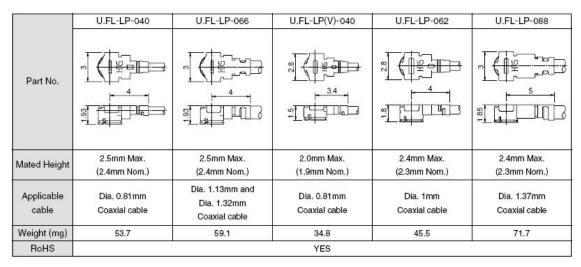


图 4-7 天线连接器配套插头图

表 4-2 RF 连接器主要参数

额定条件		环境条件
频率范围	DC to 6GHZ	- 40° C to +85° C
特性阻抗	50 Ω	- 40° C to +85° C

4.5 工作频率

表 4-3 射频频率表

频段	上行频率	下行频率	双工模式
B5	824MHz - 849MHz	869MHz - 894MHz	半双工
B8	880 MHz - 915 MHz	925 MHz - 960 MHz	半双工

4.6 RF 传导发射功率和接受灵敏度

B23 NB 模块的 RF 输出功率如下表:

表 4-4 B23 RF 输出功率

名录	3GPP 协议要求 (dBm)		最小值	
NB-IOT				
LTE B5		21 to 25		<-40dBm
LTE B8		21 to 25		<-40dBm

表 4-5 传导射频灵敏度指标

名录 (灵敏度)	3GPP 协议要求	最小	最小典型		
NB-IOT					
LTE B5	-107.5	<-107.5		-113	
LTE B8	-107.5	<-107.5		-113	

4.6 功耗特性

表 4-6 NB-IOT 功耗

	т . च्टें		Call Current (mA)			
类型	信道	功率 MAX	Power	Avg Current	Min Current	Max Current
ND IOT	TBD			TBD		
NB-IOT	TBD Max power	Max power	TBD			
B5	TBD			TBD		
	TBD		Max power	TBD		
NB-IOT B8	TBD			TBD		
	TBD			TBD		

第五章 接口电气特性

5.1 本章概述

- ◆ 极限工作
- ◆ 模块 IO 电平
- ◆ 电源
- ♦ 静电特性
- ◇ 可靠性指标

 \diamond

5.2 极限工作

表 5-1 B23 模块工作存储温度

参数	最小值	最大值
正常工作温度	-20° C	70° C
极限工作温度	-40° C	85° C
存储温度	-45° C	90° C

表 5-2 B23 模块极限工作电压范围

参数	描述	最小	典型	最大
VD AT	模块供电电压	3.4V	3.7V	4.2V
VBAT	RMS 平均电流			0.9V

5.3 模块 IO 电平

B23 模块端口 IO 电平如下:

其中对应于 1.8V USIM 应用, SIM_VDD 为 1.8V; 对应于 3V USIM 应用, SIM_VDD 为 3V。

其他数字 IO 电平统一为 2.8V。

表 5-3 B23 模块电气特性

参数	参数描述	最小值	最大值
VIH	高电平输入电压	0.7* VDD_EXT	VDD_EXT
VIL	低电平输入电压	-	0.3*VDD_EXT
VOH	高电平输出电压	0.7*VDD_EXT	VDD_EXT
VOL	低电平输出电压	0	

5.4 电源

B23 NB 模块输入供电要求如下:

表 5-4 B23 模块工作电压

参数	最小值	典型值	最大值	单位
VBAT	3.4	3.7	4.2	V

模块任何接口的上电时间不得早于模块的开机时间,否则可能导致模块异常或损坏。

5.5 静电特性

B23 模块内部没有任何过压保护措施,模块使用时需要对静电进行防护,保证产品质量。

ESD 设计建议:

- ◆ 模块的 USIM 卡外接管脚需要添加 TVS 进行防护。
- ◆ 在模块输入电源处,增加 TVS。
- ◆ 防护器件 PCB 布线应尽量走"V"形线,避免走"T"形线。
- ◆ 模块周边地平面保证完整性,不要进行分割。
- ◆ 在模块的生产、组装和实验室测试过程当中需要关注周边环境和操作人员的 ESD 管控。

测试端口 接触放电 空气放电 单位 USIM 接口 ± 4 ± 8 KV ± 4 VBAT 电源 ± 8 KV RF ANT ± 4 ± 8 KV ± 4 ± 8 BT ANT KV ± 4 ± 8 KV Other PORT

表 5-5 B23 ESD 特性

5.6 可靠性指标

表 5-6 可靠性测试

测试项目	测试条件	参考标准	实验结果
低温工作	温度: -20°C	IEC60068-2-1	外观检查:正常
	工作模式:正常工作		功能检查:正常
	测试持续时间: 24 h		射频指标检查:正常
高温工作	温度: 70°C	JESD22-A108-C	外观检查:正常
	工作模式:正常工作		功能检查:正常

B23 NB 模块硬件使用指南

	测试持续时间: 24 h		射频指标检查:正常
温度循环	高温温度: 70°C 低温温度: -20°C 工作模式: 正常工作 测试持续时间: 30 cycles; 1 h+1h/cycle	JESD22-A105-B	外观检查:正常 功能检查:正常 射频指标检查:正常
跌落测试	高度 0.8 m, 6 面各一次, 跌落到水平大理石平台 工作模式: 无包装, 无 上电, 不开机	IEC60068-2-32	外观检查:正常 功能检查:正常 射频指标检查:正常

第六章 结构及机械特性

6.1 本章概述

- ◆ 外观
- ◆ 模块机械尺寸

6.2 外观

B23 NB 模块为单面布局的 PCBA,模块外观图如下所示:

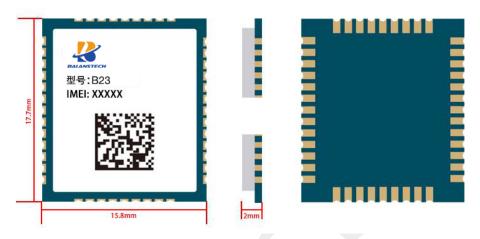


图 6-1 B23 模块外观图

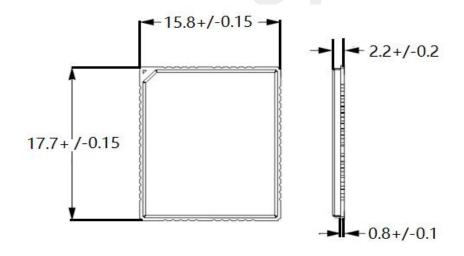


图 6-2 B23 模块正视图与侧视图(单位 MM)

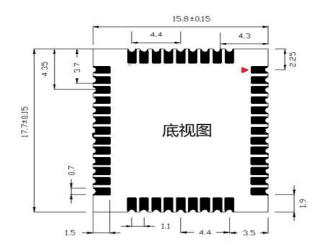


图 6-3 B23 模块底视图 (单位 MM)

第七章 生产与包装

7.1 本章概述

- ◆ 模块包装与存储
- ◆ 生产焊接

7.2 模块包装与存储

B23 NB 模块用托盘包装,并用真空密封袋将其封装,以 10PCS 为一盘,100PCS为一包,以真空密封袋的形式出货。

B23 NB 模块模块的存储需遵循如下条件:

- ◆ 模块的潮湿敏感等级为3级。
- ◆ 环境温度大于 40 摄氏度,空气湿度小于 90%情况下,模块可在真空密封袋中存放 12 个月。
- ◆ 当真空密封袋打开后,若满足模块环境温度低于 30 摄氏度,空气湿度小于 60%, 工厂在 72 小时以内完成贴片,模块可直接进行回流焊或其它高温流程。
- ◆ 若模块处于其他条件,需要在贴片前进行烘烤。
- ◆ 如果模块需要烘烤,移除模块包装后请在 125 摄氏度下(允许上下 5 摄氏度的波动) 烘烤 48 小时。

7.3 生产焊接

B23 NB 模块使用防静电托盘包装, SMT 产线需配置 Tray 模组, 推荐使用 7温区以上的回流炉;

- ◆ 为保证模块印膏质量, B23 NB 模块焊盘部分对应的钢网厚度推荐为 0.18mm。
- ◆ 推荐回流焊的温度为 235~245°C, 不能超过 260°C。
- ◆ PCB 双面布局时,LCC 模块布局必须在第 2 面加工。避免因模块重力导致翻转回流时造成模块掉件、焊接开焊及模块内部焊接不良等推荐的炉温曲线图如下图所示:

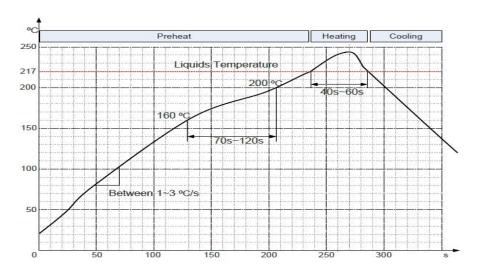


图 7-1 回流焊温度曲线图

表 7-1 回流工艺参数表

温区	时间	关键参数
预热区(40° C∼165° C)		升温速率: 1° C/s~3° C/s
均温区(160° C~210° C)	$(t1\sim t2)$: 70s \sim 120s	
回流区 (>217°C)	(t3~t4): 40s~60s	峰值温度: 235° C~245° C
冷却区	降温速率: 2° C/s ≤ Slope ≤ 5° C/s	

第八章 术语缩写

表 8-1 术语缩写

缩略语	全称	
3GPP	Third Generation Partnership Project	
AMR	Adaptive Multi-rate	
CTS	Clear to Send	
DTR	Data Terminal Ready	
DL	Down Link	
DTE	Data Terminal Equipment	
EMC	Electromagnetic Compatibility	
ESD	Electrostatic Discharge	
LED	Light-Emitting Diode	
NC	Not Connected	
PCB	Printed Circuit Board	
USIM	Universal Subscriber Identity Module	
TVS	Transient Voltage Suppressor	
TX	Transmitting Direction	
UART	Universal Asynchronous Receiver-Transmitter	
QPSK	Quadrature Phase Shift Keying	
RF	Radio Frequency	